VIA EMAIL

Confirmation via Federal Express

Dr. Sei-Jin Lee
DANA International Patent & Law Firm
4-6th Floor, New Wing,
Gwangsung Building 11
Yeoksam-ro 3-gil, Gangnam-gu
Seoul, Korea 135-936
Republic of Korea

Re: U.S. Patent No. 9,133,040
Title: Method for MN3O4 Nanoparticles by Solid-state Decomposition of
Exfoliated MNO2 Nanosheet

Owners: DONGGUK UNIVERSITY
INDUSTRY-ACADEMIC COOPERATION FOUNDATION

Your Ref.: G120126P/US
Our Ref.: 0338.30

Dear Dr. Lee:

I have enclosed the original U.S. Patent No. 9,133,040. Your client should keep the
original patent in a safe place.

Please note that periodic maintenance fees must be paid by your client to the patent office
to maintain the patent in effect. Maintenance fees are due 3½ years, 7½ years, and 11½ years
after the date of issuance (September 15, 2015). We will advise our annuity payment service
company, CPA Global, of the issuance of this patent for this purpose however we also
recommend that your clients, Dongguk University and Industry-Academic Cooperation
Foundation, as the owners, docket these dates as well. Please let us know if you will be taking
over responsibility for these maintenance fees.

You should also note that you should mark all products covered by the patent with
"Patent" or "Pat" followed by the patent number. Failure to do so could affect your ability to
collect damages in the event of infringement.
Dr. Sei-Jin Lee
September 22, 2015
Page 2

I have not proofread the patent or drawings. Because printing errors are quite common, I recommend that you proof the patent and let me know promptly if you find any errors. If you would prefer, we will proof the patent for a fee based on the size and complexity of the application.

We wish to make you aware of the possibility of receipt of communications which appear to be invoices from third parties. If you receive any correspondence regarding this case from any third parties, please disregard it. Should you receive any communication directly from the United States Patent and Trademark Office, such communications should be forwarded to Swanson & Bratschun, L.L.C. Should you have any questions, please contact us.

Should you have any questions, please do not hesitate to contact me.

Best regards,

Mary Breen Smith

MBS/sh
Enclosure

The Director of the United States Patent and Trademark Office

Has received an application for a patent for a new and useful invention. The title and description of the invention are enclosed. The requirements of law have been complied with, and it has been determined that a patent on the invention shall be granted under the law.

Therefore, this

United States Patent

Grants to the person(s) having title to this patent the right to exclude others from making, using, offering for sale, or selling the invention throughout the United States of America or importing the invention into the United States of America, and if the invention is a process, of the right to exclude others from using, offering for sale or selling throughout the United States of America, importing into the United States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2) or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the Maintenance Fee Notice on the inside of the cover.

Michelle K. Lee

Director of the United States Patent and Trademark Office
METHOD FOR MnO₂ NANO PARTICLES BY SOLID-STATE DECOMPOSITION OF EXFOLIATED MnO₂ NANOSHEET

Inventors: Hyun Jung, Seoul (KR); Na-ra Lee, Gyeonggi-do (KR)

Assignee: Dongguk University Industry-Academic Cooperation Foundation (KR)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 778 days.

Appl. No.: 13/477,911
Filed: May 22, 2012

Prior Publication Data

Foreign Application Priority Data

Int. Cl.
C01G 45/02 (2006.01)
B82Y 30/00 (2006.01)
B01J 37/03 (2006.01)
B01J 23/34 (2006.01)
B01J 35/00 (2006.01)

U.S. Cl.
CPC C01G 45/02 (2013.01); B01J 23/34 (2013.01); B01J 35/002 (2013.01); B01J 35/006 (2013.01); B01J 35/0013 (2013.01); B01J 37/031 (2013.01); B82Y 30/00 (2013.01); H01G 11/46 (2013.01); B82Y 40/00 (2013.01); C01P 2002/72 (2013.01); C01P 2002/82 (2013.01); C01P 2002/88 (2013.01); C01P 2004/04 (2013.01); C01P 2004/16 (2013.01); Y02E 60/13 (2013.01)

ABSTRACT
A method of preparing one-dimensional trimanganese tetroxide (Mn₃O₄) nanoparticles from an exfoliated two-dimensional manganese dioxide (MnO₂) nanosheet using a solid-state decomposition method, and Mn₃O₄ nanoparticles prepared according to the method are provided. The Mn₃O₄ nanoparticles can be prepared at a very low temperature without using an organic solvent or a chemical additive, compared to conventional synthesis methods.

4 Claims, 5 Drawing Sheets
OTHER PUBLICATIONS

Fig. 3
Fig. 5
METHOD FOR Mn₃O₄ NANO-PARTICLES BY SOLID-STATE DECOMPOSITION OF EXFOLIATED MnO₂ NANO-SHEET

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of Korean Patent Application No. 2011-0111230, filed Oct. 28, 2011, the disclosure of which is incorporated herein by reference in its entirety.

BACKGROUND

1. Field of the Invention

The present invention relates to a method of preparing trimanganese tetroxide (Mn₃O₄) nanoparticles from an exfoliated manganese dioxide (MnO₂) nanosheet using a solid-state decomposition method, and Mn₃O₄ nanoparticles preparing according to the method.

2. Discussion of Related Art

In general, Mn₃O₄ powder is prepared by reduction of MnO₂ or MnOOH or oxidation of Mn(OH)₃. In the reduction process, Mn₃O₄ can be obtained by reducing a manganese oxide using a method of heating a manganese oxide such as MnO₂, Mn₃O₄, or MnOOH in a kiln using methane gas as a reducing agent. When this process is applied, the heat treatment is carried out at 250 °C to 550 °C so as to prevent generation of MnO by excessive reduction. A method of yielding Mn₃O₄ powder using this process has an advantage in that the process is very simple. However, the method has problems in that it is difficult to prepare Mn₃O₄ powder in high purity since MnO is generated as impurities due to the excessive reduction during the heat treatment, and the reactivity is poor when used as a source material for preparing ferrite since a surface area of powder prepared by sintering MnO₂ at a high temperature increases with an increasing particle size of the powder.

Another method of preparing a high-purity Mn₃O₄ powder includes a method of oxidizing a manganese metal powder in a pressurized reactor while the powder is dispersed in water. In this case, the method generally has advantages in that the reaction time is short, the prepared powder has high purity, and its particles are small and uniform in diameter. However, the method has problems in that the instrument is expensive, and it is uneconomical due to excessive use of energy since it requires high temperature and voltage.

Also, there is a method of preparing Mn₃O₄ which includes adding an alkaline solution such as an ammonia solution to an aqueous manganese sulfate solution to generate manganese hydroxide and adding an oxidizing agent to the manganese hydroxide. This method has an advantage in that the prepared Mn₃O₄ has a small particle diameter, but has problems in that wastewater containing sulfuric acid ions exuded from manganese sulfate is formed during the preparation of the Mn₃O₄, and thus requires an additional process of disposing of the wastewater, and the sulfuric acid ions remaining in the Mn₃O₄ degrade product qualities as a magnetic material, and thus it requires an additional washing process to remove the sulfuric acid ions.

In recent years, a method of preparing Mn₃O₄ powder, which includes dispersing a metal manganese powder in an aqueous solution together with an ammonium salt selected from NH₄Cl, NH₄Br, NH₄I, NH₄NO₃, and (NH₄)₂SO₄ and introducing oxygen or an oxygen-containing gas as an oxidizing agent into the aqueous solution while heating the resulting mixture, has been known in the art. This method has problems regarding the corrosion of a reaction container by negative ions (Cl⁻, Br⁻, I⁻, NO₃⁻, (SO₄)²⁻, etc.) included in the ammonium salt, the wastewater disposal for removing negative ions, and the washing process used to prevent the negative ions from remaining in the final product, Mn₃O₄. Also, the method has problems in that the metal manganese powder may be condensed into lumps during the reaction as the sudden reaction is carried out on a surface of the metal manganese powder, and the purity of the condensed lumps of the metal manganese powder may be lowered due to insufficient oxidation of the metal manganese powder.

SUMMARY OF THE INVENTION

Therefore, the present inventors have found a method of synthesizing a metal oxide even at a low temperature without using a harmful solvent or additive.

The present invention is directed to providing a method of preparing a one-dimensional metal oxide from an exfoliated two-dimensional metal oxide using a solid-state decomposition method.

One aspect of the present invention provides a method of preparing metal oxide nanoparticles. Here, the method includes:

(a) adjusting pH of an exfoliated metal oxide solution;
(b) separating and drying the precipitate obtained in operation (a); and
(c) calcining the resulting product of operation (b), followed by subjecting the calcined product to solid-state decomposition.

Another aspect of the present invention provides metal oxide nanoparticles prepared according to the method and the use thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the attached drawings, in which:

FIG. 1 shows the curves of TG and DTA in a sample.
FIG. 2 shows the X-ray diffraction patterns of host-layered materials: (a) K₀.₅MnO₂, (b) H₃₀.₁MnO₂.0.₇H₂O and (c) TBA₀.₁MnO₂.0.₂H₂O.
FIG. 3 shows the X-ray diffraction patterns of a sample at various temperatures: (a) a reference temperature, (b) 100 °C, (c) 150 °C, and (d) 300 °C.
FIG. 4 shows the Fourier transform infrared spectra of a sample at various temperatures: (a) a reference temperature, (b) 100 °C, (c) 150 °C, and (d) 300 °C.
FIG. 5 shows the HR-TEM images of a sample at various temperatures: (a) a reference temperature, (b) 100 °C, (c) 150 °C, and (d) 300 °C.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereinafter, exemplary embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms. The following embodiments are described in order to enable those of ordinary skill in the art to embody and practice the present invention.

Although the terms first, second, etc. may be used to describe various elements, these elements are not limited by these terms. These terms are only used to distinguish one
element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of exemplary embodiments. The term "and/or" includes any and all combinations of one or more of the associated listed items.

It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of exemplary embodiments. The singular forms "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises," "comprising," "includes" and/or "including," when used herein, specify the presence of stated features, integers, steps, operations, elements, components and/or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.

With reference to the appended drawings, exemplary embodiments of the present invention will be described in detail below. To aid in understanding the present invention, like numbers refer to like elements throughout the description of the figures, and the description of the same elements will be not reiterated.

The present invention is directed to provide a method of preparing metal oxide nanoparticles. Here, the method includes:

(a) adjusting pH of an exfoliated metal oxide solution;
(b) separating and drying the precipitate obtained in operation (a); and
(c) calcining the resulting product of operation (b), followed by subjecting the calcined product to solid-state decomposition.

The metal oxide may be manganese oxide, titanium oxide, cobalt oxide or nickel oxide, but the present invention is not limited thereto.

For example, when the metal oxide is manganese oxide, a layered MnO₂ nano-material may be prepared by mixing potassium carbonate (K₂CO₃) and manganese sesquioxide (Mn₃O₅) at a predetermined stoichiometric ratio and calcining the resulting mixture at a high temperature to prepare layered MnO₂ having potassium ions intercalated into layers thereof. Subsequently, the MnO₂ having hydrogen ions intercalated therein, which may be readily used for an exfoliation process, may be prepared by replacing interlayer potassium ions with hydrogen ions using hydrochloric acid. Thereafter, the exfoliation of the layered MnO₂ is performed by introducing a bulky hydroxide compound such as tetraethylammonium hydroxide (TEAOH) into the MnO₂ having hydrogen ions intercalated into layers thereof. Tetraethylammonium positive ions may be replaced into layers more easily due to an acid-base reaction between OH— ions and hydrogen ions present between the layers. As a result, a nanosheet shape may be induced due to a decrease in attraction between layered sheets.

The adjustment of pH may be performed by adding an acid solution to the exfoliated MnO₂ solution. Here, the acid solution may include a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, and an acetic acid solution. The hydrochloric acid solution may be added to prepare a one-dimensional metal oxide. Also, the pH may be adjusted to 2 to 8, and the condensation may be caused during the reaction while adjusting the acidity.

Operation (b) is to separate and dry the precipitate obtained in operation (a). A reactant that starts to precipitate due to the condensation may be stirred for 0.5 to 3 hours to induce a homogenous reaction, and then dried at room temperature.

Operation (c) is to calcine the resulting product of operation (b), followed by subjecting the calcined product to solid-state decomposition. Finally, one-dimensional metal oxide nanoparticles may be formed by calcining the powdery material obtained by the drying at a temperature of 150 to 400°C for 1 to 3 hours. In operation (c), the calcination may be performed at a low temperature without using an organic solvent or an additive.

Also, the present invention is directed to providing one-dimensional metal oxide nanoparticles prepared according to the method. The metal oxide may be MnO₂.

When the nanoparticles are Mn₃O₅, the MnO₂ may be an inexpensive and effective catalyst that functions to decompose NOₓ, and may be used as a material that is useful in cleaning the atmospheric environment. In addition, the MnO₂ may be used as a precursor material to synthesize a magnetic material such as manganese zinc ferrite. Also, the MnO₂ may be used as a positive electrode material for supercapacitors.

Hereinafter, the present invention will be described with reference to Examples for better understanding of the present invention. However, it should be understood that the description proposed herein is merely a preferable example for the purpose of illustration only, not intended to limit the scope of the invention. Therefore, the Examples of the present invention are provided to more completely explain the present invention to persons of ordinary skill in the art.

Examples 1

Preparation of Mn₃O₅ Nanoparticles

1. Preparation of Layered MnO₂ Nano-Material

Layered K₀.₄MnO₂ commercially available from Sigma Aldrich was prepared by heating a stoichiometric mixture of potassium carbonate (K₂CO₃) and manganese sesquioxide (Mn₃O₅) at 800°C for 30 hours. The obtained XRD data of the manganese sesquioxide (Mn₃O₅) product was substantially identical to the values of the K₀.₄MnO₂ reported in the prior-art document. The manganese oxide having hydrogen ions intercalated therein was obtained by reacting a K₀.₄MnO₂ powder in a 1M HCl aqueous solution while stirring at room temperature for 10 days. During a proton exchange reaction, the HCl solution may be recycled every day so as to facilitate introduction of protons. The resulting product was washed, and dried at room temperature in the air to form a manganese oxide having hydrogen ions intercalated therein, which included a component of H₀.₁₂MnO₂·0.₇Η₂Ο.

2. Exfoliation of Layered MnO₂ Nanosheet

A colloidal suspension of an exfoliated MnO₂ nanosheet was prepared by stirring H₀.₁₂MnO₂·0.₇Η₂Ο (0.4 g) in 100 ml of (C₆H₅)₃NOH solution (5.2 mmol) at room temperature. The suspension was stirred for 10 days, and an unexfoliated component was separated by centrifugation at 10,000 rpm for
3. Preparation of MnO₃ Nanoparticles Using Solid-State Decomposition Method

The condensed product was collected by centrifugation (at 8,000 rpm for 10 minutes), washed with distilled water, and dried at room temperature. The resulting sample was heated at various temperatures (100, 150, 200, 300 and 400°C) for 2 hours to form MnO₃ nanoparticles.

Experiment Example 1

A 1 M hydrochloric acid solution was added to 100 mL of an aqueous solution, which was obtained by dispersing approximately 0.2 g of an exfoliated MnO₂ nanosheet while stirring. In this case, acidity (pH) of the aqueous solution was adjusted to 6 by measuring a real-time change in pH during the reaction using an acidity (pH) measuring instrument. Thereafter, when the reactant started to be condensed, the resulting mixture was stirred for 2 hours, and centrifuged to separate a precipitate. Then, the precipitate was dried at room temperature. The dried powdery reactant was calcined at a temperature of 250°C for 2 hours to prepare final one-dimensional MnO₃ nanoparticles.

Experiment Example 2

One-dimensional MnO₃ nanoparticles were prepared in the same manner as in Experiment Example 1, except that the acidity of the aqueous solution was adjusted to 4.

Experiment Example 3

One-dimensional MnO₃ nanoparticles were prepared in the same manner as in Experiment Example 2, except that the dried powdery reactant was calcined at a temperature of 300°C for 2 hours.

Experiment Example 4

One-dimensional MnO₃ nanoparticles were prepared in the same manner as in Experiment Example 2, except that the dried powdery reactant was calcined at a temperature of 350°C for 2 hours.

Experiment Example 5

One-dimensional MnO₃ nanoparticles were prepared in the same manner as in Experiment Example 2, except that the dried powdery reactant was calcined at a temperature of 400°C for 2 hours.

Experiment Example 6

One-dimensional MnO₃ nanoparticles were prepared in the same manner as in Experiment Example 2, except that the dried powdery reactant was calcined at a temperature of 200°C for 2 hours.

Experiment Example 7

One-dimensional MnO₃ nanoparticles were prepared in the same manner as in Experiment Example 2, except that the dried powdery reactant was calcined at a temperature of 150°C for 2 hours.

Examples 2

Analysis of MnO₂ and Mn₃O₄

1. Characteristics of MnO₂ and Mn₃O₄

The powder X-ray diffractions (XRD) of the crystal structures of the layered MnO₂ as a starting material and the Mn₃O₄ nanoparticles as a resulting product were measured using a graphite diffracted beam monochromator (Cu Kα radiation (λ)=1.540598 Å). The patterns were determined at an operating voltage of 40 kV and an electric current of 20 mA. The phase purities were determined using a KBr disk method by a Varian FTS 800 Fourier transform infrared (FT-IR) spectrometer. The ingredients of the sample were measured using an element analyzer (Thermo Electron Corporation, Flash EA 1112). The thermal analyzer (TG-DTA; Rigaku TAS-100) was used to check thermal behaviors of a sample, which was prepared at a heating rate of 10°C/min in a temperature range from room temperature to 900°C. The morphological characteristics of the sample were measured using a high-resolution transmission electron microscope (Tecnai G2 F30, 300 kV) and a field-emission scanning electron microscope (JEOL, JSM-6700F).

2. Element Analysis

The TBA-intercalated MnO₂ and the chemical ingredient of the prepared sample were analyzed by assuming an amount of the intercalated TBA positive ions using CHNS analysis. In the CHNS analysis, the nitrogen (N) content was of importance since N was solely derived from compositions of the TBA positive ions. As listed in the following Table 1, the TBA-intercalated MnO₂ and the ingredient of the prepared sample were determined to be TBA₆(MnO₂)₂.2H₂O and H₃O₇(TBA₆(MnO₂)₂·2H₂O), respectively. This indicates that the TBA positive ions present between MnO₂ layers were partly exchanged with protons during a pH adjustment process. The lattice parameters, symmetries and chemical ingredients of the layered MnO₂, the prepared sample and the resulting product, Mn₃O₄, are listed in the following Table 1.

TABLE 1

<table>
<thead>
<tr>
<th>Samples</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Symmetry</th>
<th>Chemical formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layered potassium manganate</td>
<td>4.840</td>
<td>4.840</td>
<td>6.923</td>
<td>hexagonal</td>
<td>K₂[MnO₃]</td>
</tr>
<tr>
<td>Layered protonic manganate</td>
<td>4.913</td>
<td>4.913</td>
<td>7.262</td>
<td>hexagonal</td>
<td>H₃[MnO₂]·0.73H₂O</td>
</tr>
<tr>
<td>TBA-intercalated manganate</td>
<td>12.415</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>TBA₆(MnO₂)₂·2H₂O</td>
</tr>
<tr>
<td>As-prepared (adjusted to pH 6)³</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>H₃O₇(TBA₆(MnO₂)₂·2H₂O)</td>
</tr>
<tr>
<td>MnO₂ nanorods</td>
<td>5.771</td>
<td>—</td>
<td>9.429</td>
<td>tetragonal</td>
<td>Mn₃O₄</td>
</tr>
</tbody>
</table>

³Tetrabutylammonium-intercalated layered manganate, which was obtained by centrifugation (10000 rpm) of exfoliated manganate solution.
³The pH condition is determined by scanning electron microscopy analysis (Supplementary data, S1)
3. Thermal Analysis

The TG and DTA curves of the prepared sample are shown in Fig. 1. The 3-step weight loss was observed on the TG curve. In the DTA curve, the first weight loss (1.8 wt %) generated under 130°C, together with a very weak endothermic peak was due to dehydroxylation of water absorbed from a surface of the sample. The second large weight loss (38.9 wt %) was due to strong generation of heat, which corresponded to oxidative decomposition of the TBA positive ions in an interlayer space of the layered MnO₂ at a temperature of 130 to 230°C. The third weight loss (7.4 wt %) at 230 to 400°C was due to formation of divalent atoms accompanied with reduction of MnO₂ from tetravalent atoms to trivalent atoms and emission of oxygen. From these results, a proper heating temperature was proposed to be approximately 300°C so as to supply the layered MnO₂ in a completely phase-change state and completely remove incinerated organic moieties in the interlayer space. Also, this was confirmed through FT-IR measurement.

4. Powder X-Ray Diffraction Analysis

An XRD pattern of the manganese oxide having layered potassium and hydrogen ions intercalated thereinto represents a birnessite structure. The original K₅₋₁MnO₂ powder XRD pattern is shown in Fig. 2(a), and the protons- and TBA-exchange patterns are also shown in Figs. 2(b) and (c). All the original diffraction peaks of K₅₋₁MnO₂ may be indexed as a hexagonal structure having a primitive unit cell parameters: a=4.840 Å and c=6.922 Å. After the proton exchange reaction, all the diffraction peaks may be indexed based on the original hexagonal unit cell having primitive lattice parameters: a=4.913 Å and c=7.262 Å, which are substantially identical to those of known quantum-layered MnO₂. It was revealed that the (001) reflection of layered manganese oxide moved toward a smaller angle during the acid treatment, and the lattice expansion was induced by injection of water molecules into the interlayer space of the manganese oxide having hydrogen ions intercalated thereinto (see Table 1). From the injection of the TBA positive ions into the layered MnO₂, it was seen that the well-defined (001) reflection was observed in a small angle region, and an underlying distance was assumed to be 12.415 Å, which indicates that the large TBA positive ions expanded toward the c-axis by approximately 7.215 Å.

Fig. 3 shows the XRD patterns of a sample after heat treatment at various temperatures: (a) a reference temperature, (b) 100°C, (c) 150°C and 300°C. As shown in Fig. 3(a), the sample had a weak and wide 001 diffraction pattern, which was mainly due to random orientation of the intercalated TBA positive ions formed due to the intercalation of protons. During the heat treatment, these X-ray patterns were changed into an amorphous state at 100°C. Fig. (3b), and a MnO₂ crystal peak having a hausmanite structure (Fig. 3(c)) was formed at 150°C. A crystallographic description of the sample corresponded to the following coordinates: (112), (103), (211), (321) and (224), and the calculated lattice constants, a=b=5.771 Å and c=9.429 Å, (see Table 1) were substantially identical to those of JCPDS 24-0734: a=b=5.762 Å and c=9.469 Å, and represented the formation of a MnO₂ compound. Attention was paid to the fact that the phase change of manganese oxide hausmanite in the layered MnO₂ could be achieved even at 150°C. On the other hand, the proton- and TBA-exchanged layered MnO₂ (H₃₋₁MnO₂·0.7H₂O and TBA₀.₇MnO₂·0.2H₂O) was not converted into Mn₃O₄ within the temperature region. After the heat treatment, the diffraction pattern increased due to crystallization of Mn₃O₄.

5. FT-IR Analysis

Fig. 4 shows the FT-IR spectrum of a sample that is heat-treated at a reference temperature, 100°C, 150°C and 300°C. Bands at approximately 2,950 and 2,870 cm⁻¹ indicated the presence of the TBA molecule in layers and were due to asymmetric and symmetric aliphatic C-H stretching vibrations. Except for the spectrum of a sample heat-treated at 300°C, all the spectra showed wide and intense bands at the center of approximately 3,420 cm⁻¹, which corresponded to O-H stretching vibrations of hydroxyl groups of the water molecules present in the layers. Specific bands at 499 cm⁻¹ and 440 cm⁻¹ shown in Figs. 4(a) and (b) were due to an asymmetric stretching mode of MnO₆ octahedrons in birnessite manganese, which corresponded to the XRD analysis. An absorption peak at approximately 1,067 cm⁻¹ shown in Fig. 4(c) might be due to O-H bending vibrations bound to manganese atoms. Wide absorption bands at approximately 610, 510 and 480 cm⁻¹ shown in Figs. 4(c) and (d) were associated with a tetrahedral Mn-O stretching mode and the connection between octahedral portions in the Mn₃O₄ spinel structure. This indicates that the phase change from birnessite manganese into Mn₃O₄ hausmannite can be achieved even at 150°C.

6. Transmission Electron Microscopic Analysis

Fig. 5 shows the HR-TEM images of a sample that is heat-treated at various temperatures: (a) a reference temperature, (b) 100°C, (c) 150°C, and (d) 300°C. The sample prepared at 100°C and the heat-treated samples were all typically shown as the exfoliated layered materials. In the case of the prepared sample, corners of the layers were rounded due to hydrophobic interaction between injected TBA protons. Nanoparticles (i) having a diameter of 10 to 15 nm and a length of 50 to 100 nm and irregular thin sheet-type fragments were observed in the sample heat-treated at 150°C. When the temperature increased to 300°C, the nanoparticles had a short length of 30 to 50 nm and a similar diameter.

While the invention has been described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention as defined by the appended claims.

What is claimed is:

1. A method of preparing metal oxide nanoparticles, comprising:
(a) adjusting pH of an exfoliated metal oxide solution comprising manganese oxide or trimanganese tetroxide (Mn₃O₄);
(b) separating and drying the precipitate obtained in operation (a); and
(c) calcining the resulting product of operation (b).

2. The method of claim 1, wherein the adjustment of pH in operation (a) is performed by adding an acid solution.

3. The method of claim 1, wherein the pH in operation (a) is adjusted to 2 to 8.

4. The method of claim 1, wherein operation (c) is performed at 150 to 400°C.

* * * * + *